Panasonic

1 Form A 5A small size power relay for interface

PQ RELAYS

Protective construction: Sealed type

FEATURES

- 1. Compact and slim
 20 mm (L)×10 mm (W)×16 mm (H)
 .787 inch (L)×.394 inch (W)×.630 inch
 (H) slim type
- 2. Twin contact structure
 Gold-clad twin (bifurcated) contacts
 provide high reliability.
- High capacity and small size
 This small package can provide high 5 A capacity.
- 4. High sensitivity with 200 mW nominal operating power
- 5. High surge breakdown voltage Despite the compact size, between contact and coil surge resistance of 8,000 V has been achieved. The relay has low susceptibility to noise.
- Outstanding shock resistance Functional shock resistance: 294 m/s²
- 7. Sealed type
- 8. Sockets are available

TYPICAL APPLICATIONS

- 1. Industrial equipment, office equipment
- 2. Measuring devices and test equipment
- 3. Interface relays for programmable controllers
- 4. Output relays in small devices such as timers, counters, sensors, and temperature controllers

ORDERING INFORMATION

Contact arrangement
1a: 1 Form A (Bifurcated)

Nominal coil voltage (DC)
3, 5, 6, 9, 12, 18, 24 V

TYPES

Contact arrangement	Nominal coil voltage	Part No.
	3V DC	PQ1a-3V
	5V DC	PQ1a-5V
1 Form A (Bifurcated)	6V DC	PQ1a-6V
	9V DC	PQ1a-9V
	12V DC	PQ1a-12V
	18V DC	PQ1a-18V
	24V DC	PQ1a-24V

Standard packing: Carton: 100 pcs.; Case: 500 pcs.

^{*} Sockets available.

RATING

1.Coil data

- Operating characteristics such as 'Operate voltage' and 'Release voltage' are influenced by mounting conditions, ambient temperature, etc.

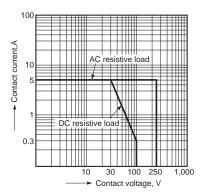
 Therefore release was the property of the standard collections and the property of the standard collections.

 Therefore release was the property of the standard collections.
- Therefore, please use the relay within ± 5% of rated coil voltage.

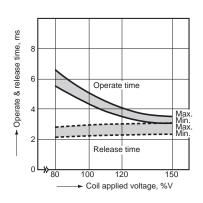
 'Initial' means the condition of products at the time of delivery.

Nominal coil voltage	Pick-up voltage (at 20°C 68°F)	Drop-out voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. applied voltage
3V DC			66.7mA	45Ω		
5V DC			40 mA	125Ω		180%V of nominal voltage
6V DC	75%V or less of	5%V or more of	33.3mA	180Ω		(at 20°C 68°F)
9V DC	nominal voltage	nominal voltage	22.2mA	405Ω	200mW	,
12V DC	(Initial)	(Initial)	16.7mA	720Ω		130%V of
18V DC			11.1mA	1,620Ω		nominal voltage (at 70°C 158°F)
24V DC			8.3mA	2,880Ω		(41.75 5 155 1)

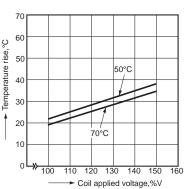
2. Specifications

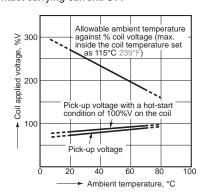

Characteristics	Item		Specifications		
	Arrangement		1 Form A (Bifurcated)		
Contact	Contact resistance (Initial)		Max. 50 mΩ (By voltage drop 6 V DC 1A)		
	Contact material		Au-clad AgNi type		
	Nominal switching capacity (resistive load)		5 A 250 V AC, 5 A 30 V DC		
	Max. switching power (resistive load)		1,250 VA, 150 W		
D-ti	Max. switching voltage		250 V AC, 110 V DC (0.3 A)		
Rating	Max. switching curre	nt	5 A		
	Nominal operating power		200 mW		
	Min. switching capacity (Reference value)*1		100µA 100mV DC		
	Insulation resistance (Initial)		Min. 1,000MΩ (at 500V DC) Measurement at same location as "Breakdown voltage" section.		
	Breakdown voltage	Between open contacts	1,000 Vrms for 1min. (Detection current: 10mA.)		
	(Initial)	Between contact and coil	4,000 Vrms for 1min. (Detection current: 10mA.)		
Electrical characteristics	Surge breakdown voltage (Initial)*2 Between contacts and coil		8,000 V		
	Operate time (at 20°C 68°F) (Initial)		Max. 20 ms (Nominal voltage applied to the coil, excluding contact bounce time.)		
	Release time (at 20°C 68°F) (Initial)		Max. 10 ms (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)		
	Shock resistance	Functional	294 m/s² (Half-wave pulse of sine wave: 11 ms; detection time: 10µs.)		
Mechanical		Destructive	980 m/s² (Half-wave pulse of sine wave: 6 ms.)		
characteristics		Functional	10 to 55 Hz at double amplitude of 2.0 mm (Detection time: 10μs.)		
	Vibration resistance	Destructive	10 to 55 Hz at double amplitude of 3.5 mm		
Expected life	Mechanical		Min. 2×10 ⁷ (at 180 times/min.)		
	Electrical (at 20 times/min.)		Min. 2×10 ⁵ (5 A 125 V AC), Min. 10 ⁵ (5 A 250 V AC), Min. 10 ⁵ (5 A 30 V DC)		
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: -40°C to 70°C -40°F to 158°F; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
	Max. operating speed (at rated load)		20 times/min.		
Unit weight			Approx. 7 g .25 oz		

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.


- *2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu s$ according to JEC-212-1981
- 23. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

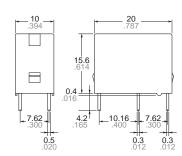
REFERENCE DATA


1. Max. switching capacity

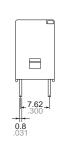

2. Operate & release time Tested sample: PQ1a-24V, 25 pcs.

3. Coil temperature rise Measured portion: Inside the coil Contact carrying current: 5 A

4. Ambient temperature characteristics Tested sample: PQ1a-24V Contact carrying current: 5 A



DIMENSIONS (mm inch)


CAD The CAD data of the products with a "CAD" mark can be downloaded from our Website.

CAD

External dimensions

PC board pattern

Schematic (Bottom view)

(Bottom view)

Tolerance: ±0.1 ±.004

General tolerance

Dimension:

Less than 1mm .039inch:

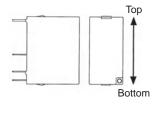
Min. 1mm .039inch less than 5mm .197 inch:

Min. 5mm .197 inch:

±0.2 ±.008 ±0.3 ±.012 ± 0.4 $\pm .016$

SAFETY STANDARDS

UL (Recognized)		CSA (Certified)		VDE (Certified)			
File No.	Contact rating	File No.	Contact rating	File No.	Contact rating	Temp.	Cycles
E43028	5A 277V AC	LR26550	5A 277V AC	40013088	5A 250V AC (cosφ =0.4)	70°C 158°F	10⁴
	¹/ ₆ HP 277V AC	1	¹/ ₆ HP 277V AC	1	5A 30V DC (0ms)	70°C 158°F	10⁴
	5A 30V DC	1	5A 30V DC	1	_	_	_
	0.3A 110V DC]	0.3A 110V DC	1	_	_	_


EN/IEC VDE Certified INSULATION CHARACTERISTIC (IEC61810-1)

Item	Characteristic	
Clearance/Creepage distance (IEC61810-1)	Min. 3.0mm/4.0mm	
Category of protection (IEC61810-1)	RT III	
Tracking resistance (IEC60112)	PTI 175	
Insulation material group	III a	
Over voltage category	III	
Rated voltage	250V	
Pollution degree	3	
Type of insulation (Between contact and coil)	Basic insulation	
Type of insulation (Between open contacts)	Micro disconnection	

NOTES

1. For cautions for use, please read "GENERAL APPLICATION GUIDELINES".

Note about relay installation orientation

When installing with the relay terminals parallel to the ground, the contact terminals at the bottom and the coil terminals at the top, component friction will occur after numerous switching actions or due to vibration in the non-excitation state. Since this may cause the relay to stop functioning when the pick-up voltage increases even if the nominal voltage is applied, please do not install using this orientation.

Please refer to "the latest product specifications" when designing your product.

• Requests to customers :

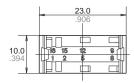
https://industrial.panasonic.com/ac/e/salespolicies/

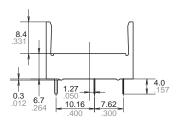
RoHS

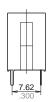
ACCESSORIES

PQ RELAYS PC BOARD SOCKET

TYPE


Product name	Part No.
PC board socket	PC1a-PS


DIMENSIONS (mm inch)


CAD The CAD data of the products with a "CAD" mark can be downloaded from our Website.

CAD

External dimensions

Tolerance: ±0.3 ±.012

GUIDELINES FOR POWER RELAYS AND HIGH-CAPACITY DC CUT OFF RELAYS USAGE

For cautions for use, please read "GUIDELINES FOR RELAY USAGE".

https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp

Precautions for Coil Input

■Long term current carrying

A circuit that will be carrying a current continuously for long periods without relay switching operation. (circuits for emergency lamps, alarm devices and error inspection that, for example, revert only during malfunction and output warnings with form B contacts) Continuous, long-term current to the coil will facilitate deterioration of coil insulation and characteristics due to heating of the coil itself.

For circuits such as these, please use a magnetic-hold type latching relay. If you need to use a single stable relay, use a sealed type relay that is not easily affected by ambient conditions and make a failsafe circuit design that considers the possibility of contact failure or disconnection.

■DC Coil operating power

Steady state DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.

However, please check with the actual circuit since the electrical characteristics may vary. The rated coil voltage should be applied to the coil and the set/reset pulse time of latching type relay differs for each relays, please refer to the relay's individual specifications.

■ Coil connection

When connecting coils of polarized relays, please check coil polarity (+,-) at the internal connection diagram (Schematic). If any wrong connection is made, it may cause unexpected malfunction, like abnormal heat, fire and so on, and circuit do not work. Avoid impressing voltages to the set coil and reset coil at the same time.

■ Maximum allowable voltage and temperature rise

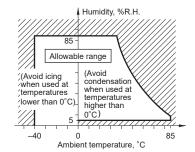
Proper usage requires that the rated coil voltage be impressed on the coil. Note, however, that if a voltage greater than or equal to the maximum continuous voltage is impressed on the coil, the coil may burn or its layers short due to the temperature rise. Furthermore, do not exceed the usable ambient temperature range listed in the catalog.

Operate voltage change due to coil temperature rise (Hot start)

In DC relays, after continuous passage of current in the coil, if the current is turned OFF, then immediately turned ON again, due to the temperature rise in the coil, the pick-up voltage will become somewhat higher. Also, it will be the same as using it in a higher temperature atmosphere. The resistance/temperature relationship for copper wire is about 0.4% for 1°C, and with this ratio the coil resistance increases. That is, in order to operate of the relay, it is necessary that the voltage be higher than the pick-up voltage and the pick-up voltage rises in accordance with the increase in the resistance value. However, for some polarized relays, this rate of change is considerably smaller.

Ambient Environment

•Usage, Transport, and Storage Conditions


During usage, storage, or transportation, avoid locations subjected to direct sunlight and maintain normal temperature, humidity and pressure conditions.

•Temperature/Humidity/Pressure

When transporting or storing relays while they are tube packaged, there are cases the temperature may differ from the allowable range. In this case be sure to check the individual specifications. Also allowable humidity level is influenced by temperature, please check charts shown below and use relays within mentioned conditions. (Allowable temperature values differ for each relays, please refer to the relay's individual specifications.)

- 1) Temperature:
 - The tolerance temperature range differs for each relays, please refer to the relay's individual specifications
- 2) Humidity: 5 to 85 % RH
- 3) Pressure:

86 to 106 kPa

Dew condensation

Condensation occurs when the ambient temperature drops suddenly from a high temperature and humidity, or the relay is suddenly transferred from a low ambient temperature to a high temperature and humidity. Condensation causes the failures like insulation deterioration, wire disconnection and rust etc. Panasonic Corporation does not guarantee the failures caused by condensation.

The heat conduction by the equipment may accelerate the cooling of device itself, and the condensation may occur. Please conduct product evaluations in the worst condition of the actual usage. (Special attention should be paid when high temperature heating parts are close to the device. Also please consider the condensation may occur inside of the device.)

- 6 -

Condensation or other moisture may freeze on relays when the temperature become lower than 0°C. This icing causes the sticking of movable portion, the operation delay and the contact conduction failure etc. Panasonic Corporation does not guarantee the failures caused by the icina

The heat conduction by the equipment may accelerate the cooling of relay itself and the icing may occur. Please conduct product evaluations in the worst condition of the actual usage.

Low temperature and low humidity

The plastic becomes brittle if the switch is exposed to a low temperature, low humidity environment for long periods of time.

High temperature and high humidity

Storage for extended periods of time (including transportation periods) at high temperature or high humidity levels or in atmospheres with organic gases or sulfide gases may cause a sulfide film or oxide film to form on the surfaces of the contacts and/or it may interfere with the functions. Check out the atmosphere in which the units are to be stored and transported.

GUIDELINES FOR POWER RELAYS AND HIGH-CAPACITY DC CUT OFF RELAYS USAGE

Package

In terms of the packing format used, make every effort to keep the effects of moisture, organic gases and sulfide gases to the absolute minimum.

Silicon

When a source of silicone substances (silicone rubber, silicone oil, silicone coating materials and silicone filling materials etc.) is used around the relay, the silicone gas (low molecular siloxane etc.) may be produced.

This silicone gas may penetrate into the inside of the relay. When the relay is kept and used in this condition, silicone compound may adhere to the relay contacts which may cause the contact failure. Do not use any sources of silicone gas around the relay (Including plastic seal types).

NOx Generation

When relay is used in an atmosphere high in humidity to switch a load which easily produces an arc, the NOx created by the arc and the water absorbed from outside the relay combine to produce nitric acid. This corrodes the internal metal parts and adversely affects operation. Avoid use at an ambient humidity of 85%RH or higher (at 20°C). If use at high humidity is unavoidable, please contact our sales representative.

Others

■ Cleaning

- Although the environmentally sealed type relay (plastic sealed type, etc.) can be cleaned, avoid immersing the relay into cold liquid (such as cleaning solvent) immediately after soldering. Doing so may deteriorate the sealing performance.
- 2) Cleaning with the boiling method is recommended(The temperature of cleaning liquid should be $40\,^{\circ}\text{C}$ or lower).
 - Avoid ultrasonic cleaning on relays. Use of ultrasonic cleaning may cause breaks in the coil or slight sticking of the contacts due to ultrasonic energy.

Please refer to "the latest product specifications" when designing your product.

•Requests to customers:

https://industrial.panasonic.com/ac/e/salespolicies/

- 7 —

Panasonic Corporation
Electromechanical Control Business Division Please contact ■ 1006, Oaza kadoma, kadoma-shi, Osaka 571-8506, japan industral.panasonic.com/ac/e/ **Panasonic**®

ASCTB206E-3 201905

©Panasonic Corporation 2019

Specifications are subject to change without notice.